Breuken Vermenigvuldigen ab⋅cd=a⋅cb⋅d\Large \frac{\textcolor{blue}{a}}{\textcolor{red}{b}} \cdot \frac{\textcolor{green}{c}}{\textcolor{orange}{d}} = \frac{\textcolor{blue}{a}\cdot \textcolor{green}{c}}{\textcolor{red}{b}\cdot \textcolor{orange}{d}}ba⋅dc=b⋅da⋅c Optellen ab+cd=(a⋅d)+(c⋅b)b⋅d\Large \frac{\textcolor{blue}{a}}{\textcolor{red}{b}}+\frac{\textcolor{green}{c}}{\textcolor{orange}{d}} = \frac{(\textcolor{blue}{a}\cdot \textcolor{orange}{d})+(\textcolor{green}{c}\cdot \textcolor{red}{b})}{\textcolor{red}{b}\cdot \textcolor{orange}{d}}ba+dc=b⋅d(a⋅d)+(c⋅b) xab+ycd=x+y+ab+cd\Large x\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}+y\frac{\textcolor{green}{c}}{\textcolor{orange}{d}} = x+y+\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}+\frac{\textcolor{green}{c}}{\textcolor{orange}{d}}xba+ydc=x+y+ba+dc Delen a(bc)=a⋅cb\Large \frac{\textcolor{blue}{a}}{(\frac{\textcolor{red}{b}}{\textcolor{green}{c}})} = \textcolor{blue}{a}\cdot\frac{\textcolor{green}{c}}{\textcolor{red}{b}}(cb)a=a⋅bc (ab)c=ab⋅c\Large \frac{(\frac{\textcolor{blue}{a}}{\textcolor{red}{b}})}{\textcolor{green}{c}} = \frac{\textcolor{blue}{a}}{\textcolor{red}{b}\cdot \textcolor{green}{c}}c(ba)=b⋅ca