Machten

Basisregels

(xa)b=xab\Large (x^{\textcolor{blue}{a}})^{\textcolor{red}{b}} = x^{\textcolor{blue}{a}\cdot\textcolor{red}{b}} xaxb=xa+b\Large x^{\textcolor{blue}{a}}\cdot x^{\textcolor{red}{b}} = x^{\textcolor{blue}{a}+\textcolor{red}{b}} xaxb=xab\Large \frac{x^{\textcolor{blue}{a}}}{x^{\textcolor{red}{b}}} = x^{\textcolor{blue}{a}-\textcolor{red}{b}}

Machten en vermenigvuldigen

axb=bax\Large \textcolor{blue}{a}^x\cdot\textcolor{red}{b} = \textcolor{red}{b}\cdot\textcolor{blue}{a}^x abxc=(ac)bx\Large \textcolor{blue}{a}\cdot\textcolor{red}{b}^x\cdot\textcolor{green}{c} = (\textcolor{blue}{a}\cdot \textcolor{green}{c})\cdot\textcolor{red}{b}^{x} abxb=abx+1\Large \textcolor{blue}{a}\cdot\textcolor{red}{b}^x\cdot\textcolor{red}{b} = \textcolor{blue}{a}\cdot\textcolor{red}{b}^{x+1}

Complexe regels voor machten

axnbxm=(ab)xn+m\Large \textcolor{blue}{a}x^{\textcolor{green}{n}}\cdot\textcolor{red}{b}x^{\textcolor{orange}{m}} = (\textcolor{blue}{a}\cdot \textcolor{red}{b})x^{\textcolor{green}{n}+\textcolor{orange}{m}} nmaxn+bxm=axn+bxm\Large \textcolor{green}{n} \neq \textcolor{orange}{m} \Rightarrow \textcolor{blue}{a}x^{\textcolor{green}{n}}+\textcolor{red}{b}x^{\textcolor{orange}{m}} = \textcolor{blue}{a}x^{\textcolor{green}{n}}+\textcolor{red}{b}x^{\textcolor{orange}{m}} axn+bxn=(a+b)xn\Large \textcolor{blue}{a}x^{\textcolor{green}{n}}+\textcolor{red}{b}x^{\textcolor{green}{n}} = (\textcolor{blue}{a}+\textcolor{red}{b})x^{\textcolor{green}{n}}